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SUMMARY

This special issue is dedicated to the Fourteenth Finite Elements in Flow Problems Conference held in
Santa Fe, New Mexico, on March 24–28, 2007. The papers in this special issue were selected to represent
the broad cross-section of computational fluid dynamics topics ranging from discontinuous Galerkin and
stabilized methods to fluid–structure interaction and viscoelastic flows at the 14th meeting. Copyright q
2008 John Wiley & Sons, Ltd.
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The Finite Elements in Flow (FEF) Problems Conference has a rich history that closely parallels
the development and maturation of the finite element method and its application to computational
fluid dynamics problems. The FEF meetings began in Swansea (U.K.) in 1972 and are the principal
forum for the exchange of research results in all aspects of flow simulation using the finite element
method. The scope of the conference is intentionally broad with coverage of theory, implementation,
assessment and application in all of the major and emerging areas of fluid dynamics and flow-
related phenomena. The purpose of the 14th conference in the series continued to be the gathering
of mathematicians, engineers, computer scientists and students for the exchange of the latest
information on all aspects of flow modeling and simulation.

This special issue contains papers originally presented at the 14th FEF Conference held in
Santa Fe, New Mexico, on March 24–28, 2007. The 19 peer-reviewed papers in this issue represent
a cross-section of the conference and discuss advances in space–time discontinuous Galerkin
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methods, large-eddy simulation (LES), coupled physics, design sensitivity, stabilized methods and
stability analysis.

The work by Sevilla et al. [1] considers the development of a hybrid NURBS-enhanced finite
element method (NEFEM) blended with a discontinuous Galerkin formulation to solve the Euler
equations. NURBS are used to provide exact geometry and accurate numerical fluxes. In addition,
the use of p-refinement delivers exponential convergence.

The work by Montlaur et al. [2] uses an interior penalty method with a discontinuous Galerkin
formulation for incompressible Stokes flow. This approach permits the velocity field to be split into
div-free and curl-free spaces on an element-by-element basis. The resulting weak form permits the
solution to proceed with two de-coupled problems with a hybrid (edge) pressure and an element-
interior pressure. The additional penalty term permits the computation of solenoidal velocities
without an explicit pressure computation.

Kanschat and Schötzau [3] develop an a posteriori error analysis of the discontinuous Galerkin
method for the incompressible Navier–Stokes equations using Raviart–Thomas elements and an inte-
rior penalty. The discretely divergence-free elements are implemented in an h-adaptive framework.

Palaniappan et al. [4] present two methods for resolving shocks and discontinuities in a space–
time discontinuous Galerkin framework. The first approach is an adaptation of the sub-cell shock-
capturing technique, recently introduced by Persson and Peraire,‡ to the space–time discontinuous
Galerkin method with causal space–time grids. The second method relies on adaptive space–time
meshing to track singular surfaces.

Elias et al. [5] develop an edge-based, stabilized finite element formulation to treat gravity-
driven flows in lock-exchange problems. Validation is performed for head current position and
velocity using experimental data, DNS and LES simulations. The ultimate goal is to demonstrate
a scalable, parallel LES capability for simulating particulate-laden flows.

The work by Guermond [6] considers weak solutions for the Navier–Stokes solutions. The
suitability of Faedo–Galerkin solutions is shown to depend on the use of finite-dimensional spaces
with a discrete commutator property and satisfying the inf–sup conditions. This work investigates
the connections between suitable weak solutions and LES and demonstrates a proposed closure
model developed in the framework of ‘suitable weak solutions’.

Liu and Nithiarasu [7] use a fully explicit characteristic-based method to calculate the viscoelastic
flows with an upper-convected Maxwell model. An equal-order u–P interpolation is used with an
artificial damping method to produce a method capable of treating high Deborah number flows.

A direct-coupling technique for coupled thermal-flow problems is presented by Tezduyar et al.
[8]. The formulation relies on streamline upwind and pressure stabilization in a Petrov–Galerkin
framework with discontinuity-capturing directional dissipation. A series of 2D and 3D natural
convection problems are used to demonstrate the method.

The work by Heinrich et al. [9] focuses on the development of a projection method for the
simulation of dendritic solidification in flows where large local density gradients are present.
The modified projection method used in this work preserves the pressure gradient–body force
coupling. The computational efficiency of the projection method results in significant reduction in
computational complexity for this class of problems.

An accurate approach to treating ‘fixed-grid’ fluid–structure interaction problems is investigated
by Gerstenberger and Wall [10]. The goal is to avoid complex re-meshing techniques either by local
mesh refinement near the fluid–structure interface or by a hybrid ALE technique. They ultimately

‡Persson PP, Peraire J. Sub-cell shock capturing for discontinuous Galerkin methods for hyperbolic conservation
laws. Forty-fourth AIAA Aerospace Sciences Meeting and Exhibit. AIAA: New York, 2006.
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demonstrate that the hybrid ALEmethod is essentially a variation of the XFEM/Lagrange multiplier
scheme.

Codina and co-workers [11] present a stabilized finite element formulation based on the varia-
tional multiscale approach for the modified Boussinesq equations, i.e. the shallow-water equations.
A new approach to obtaining a stabilized equal-order interpolation is achieved with the splitting
between resolved-scale and subgrid-scale terms. They also describe the consistent treatment of the
high-order derivatives in the model.

Lube et al. [12] apply the stabilized FEM to the prediction of ventilation and thermal comfort
in buildings. A k–�–�– f turbulence model is used for time-dependent RANS simulations of flow
in a building. The application of this approach to thermal comfort is demonstrated. Their approach
also permits the direct calculation of the age of the air.

A detailed analysis of consistency recovery in the context of stabilized methods for convection–
diffusion is undertaken by Nadukandi et al. [13]. This work addresses the relative trade-offs
associated with consistently recovering the high-order terms in the discrete residual that is an
integral part of stabilized methods. A spectral analysis of semi-discrete and fully discrete systems
is presented to quantify the effects of consistent residual recovery.

Masud and Kwack [14] develop a stabilized mixed FEM for the first-order form of advection–
diffusion equation. The new approach uses the fine-scale variational problem to derive stabilization
terms that do not rely on the mesh length scale and physical parameters in the problem. Optimal
convergence rates are demonstrated for both structured and unstructured meshes.

The treatment of design sensitivities (shape and value) is considered by Ilinca et al. [15]. A
general method for computing first- and second-order accurate flow sensitivities is developed and
applied to steady and transient problems. The method is applied to estimate parameter sensitivity
in terms of Reynolds number and also to shape sensitivity.

A high-order least-squares spectral element method is developed by Gerritsma et al. [16] for the
Euler equations. The formulation takes advantage of the inherently stable properties and optimal
convergence rates of the least-squares method. In this work, the detailed treatment of curved walls
is considered. The method is evaluated using flows ranging from subsonic to supersonic.

The topic of adaptivity and a posteriori error estimation for coupled heat-transfer fluid flow is
treated in the work by Larson et al. [17]. The error estimator is based on a duality technique and
applied to the heat flux at an immersed boundary. An h-adaptivity algorithm is developed around
a dual error estimator for the coupled problem.

Behr [18] presents a unique method for generating simplex space–time meshes with arbitrary
temporal refinement in portions of the space–time slabs. Both tetrahedral (2D) and pentatope (3D)
space–time meshes are tested with advection–diffusion problems using local refinement in the time
domain.

The use of a ‘timestepper’s approach’ for absolute and convective stability analysis is presented
in the work by Barkley et al. [19]. The approach to converting a time-accurate Navier–Stokes
solver to provide an evolution operator for the adjoint linearized equations is discussed with the
concomitant tools for the eigenvalue extraction. The approach suggests the possibility of solution
strategies with embedded stability analyses.

The 14th FEF conference was hosted by Sandia National Laboratories under the auspices of
the International Association of Computational Mechanics. The meeting was chaired by David K.
Gartling (Sandia National Laboratories) and Mark A. Christon (Los Alamos National Laboratory).
Administrative assistance for the meeting was provided by U.S. Association for Computational
Mechanics (USACM), the University of New Mexico and Los Alamos National Laboratory.
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We thank the editors of the International Journal for Numerical Methods in Fluids for agreeing
to publish a special issue dedicated to the 14th FEF conference. We also thank Frea Thorne and
Adele Davies for their assistance during the manuscript review process.
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